高考數(shù)學中有哪些秒殺公式呢,對數(shù)學公式的掌握能夠奠定大家做題的基礎,下面小編為大家提供高考數(shù)學秒殺公式,僅供大家參考。
1、向量。做向量運算時可以利用物理上矢量法的正交分解做,對解一些向量難題有好處。
2、四面體。在三條棱兩兩垂直的四面體中,設三條棱長為abc底面的高為h,則有,1/h∧2=1/a∧2+1/b∧2+1/c∧2
3、平面方程??臻g直角坐標系中的平面方程,先求平面的一個法向量n=(a,b,c)再取平面內(nèi)任意一點A(e,f,g),則平面的方程為a(x-e)+b(y-f)+c(z-g)=0,化成一般式Ax+By+Cz+D=0,之后就可以解很多東西,比如求點M(o,p,q)到面距離,用公式d=丨Ao+Bp+Cq+D丨/√(A∧2+B∧2+C∧2)(類似點到直線距離公式)
4、正弦、余弦的和差化積公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
【注意右式前的負號】以上四組公式可以由積化和差公式推導得到
5、函數(shù)的周期性問題(記憶三個):1)若f(x)=-f(x+k),則T=2k;2)若f(x)=m/(x+k)(m不為0),則T=2k;3)若f(x)=f(x+k)+f(x-k),則T=6k。注意點:a.周期函數(shù),周期必無限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
6,數(shù)列的終極利器,特征根方程。(如果看不懂就算了)。首先介紹公式:對于an+1=pan+q(n+1為下角標,n為下角標),a1已知,那么特征根x=q/(1-p),則數(shù)列通項公式為an=(a1-x)p2(n-1)+x,這是一階特征根方程的運用。二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數(shù)列可以構(gòu)造(兩邊同時加數(shù))
7,函數(shù)詳解補充:1、復合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外2,復合函數(shù)單調(diào)性:同增異減3,重點知識關于三次函數(shù):恐怕沒有多少人知道三次函數(shù)曲線其實是中心對稱圖形。它有一個對稱中心,求法為二階導后導數(shù)為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數(shù)界定。另外,必有唯一一條過該中心的直線與兩旁相切。
8,常用數(shù)列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2記憶方法:前面減去一個1,后面加一個,再整體加一個2
9,適用于標準方程(焦點在x軸)爆強公式:k橢=-{(b2)xo}/{(a2)yo}k雙={(b2)xo}/{(a2)yo}k拋=p/yo注:(xo,yo)均為直線過圓錐曲線所截段的中點。
10,強烈推薦一個兩直線垂直或平行的必殺技:已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0若它們垂直:(充要條件)a1a2+b1b2=0;若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個條件為了防止兩直線重合)注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!
11,經(jīng)典中的經(jīng)典:相信鄰項相消大家都知道。下面看隔項相消:對于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔項相加保留四項,即首兩項,尾兩項。自己把式子寫在草稿紙上,那樣看起來會很清爽以及整潔!
12,爆強△面積公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:這個公式可以解決已知三角形三點坐標求面積的問題!
13,你知道嗎?空間立體幾何中:以下命題均錯:1,空間中不同三點確定一個平面;2,垂直同一直線的兩直線平行;3,兩組對邊分別相等的四邊形是平行四邊形;4,如果一條直線與平面內(nèi)無數(shù)條直線垂直,則直線垂直平面;5,有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱;6,有一個面是多邊形,其余各面都是三角形的幾何體都是棱錐注:對初中生不適用。
14,一個小知識點:所有棱長均相等的棱錐可以是三、四、五棱錐。
15,求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n為正整數(shù))的最小值。答案為:當n為奇數(shù),最小值為(n-1)/4,在x=(n+1)/2時取到;當n為偶數(shù)時,最小值為n/4,在x=n/2或n/2+1時取到。
16,√〔(a+b)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b為正數(shù),是統(tǒng)一定義域)
17,橢圓中焦點三角形面積公式:S=btan(A/2)在雙曲線中:S=b/tan(A/2)說明:適用于焦點在x軸,且標準的圓錐曲線。A為兩焦半徑夾角。
18,爆強定理:空間向量三公式解決所有題目:cosA=|{向量a.向量b}/[向量a的?!料蛄縝的模]|一:A為線線夾角,二:A為線面夾角(但是公式中cos換成sin)三:A為面面夾角注:以上角范圍均為[0,派/2]。
19,爆強公式1+2+3+…+n=1/6(n)(n+1)(2n+1);13+23+33+…+n3=1/4(n)(n+1)
20,爆強切線方程記憶方法:寫成對稱形式,換一個x,換一個y。舉例說明:對于y=2px可以寫成y×y=px+px再把(xo,yo)帶入其中一個得:y×yo=pxo+px
高考數(shù)學爆強秒殺公式與方法三
21,爆強定理:(a+b+c)n的展開式[合并之后]的項數(shù)為:Cn+22,n+2在下,2在上
22,[轉(zhuǎn)化思想]切線長l=√(d-r)d表示圓外一點到圓心得距離,r為圓半徑,而d最小為圓心到直線的距離。
23,對于y=2px,過焦點的互相垂直的兩弦AB、CD,它們的和最小為8p。爆強定理的證明:對于y=2px,設過焦點的弦傾斜角為A.那么弦長可表示為2p/〔(sinA)〕,所以與之垂直的弦長為2p/[(cosA)],所以求和再據(jù)三角知識可知。(題目的意思就是弦AB過焦點,CD過焦點,且AB垂直于CD)
24,關于一個重要絕對值不等式的介紹爆強:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣
25,關于解決證明含ln的不等式的一種思路:爆強:舉例說明:證明1+1/2+1/3+…+1/n>ln(n+1)把左邊看成是1/n求和,右邊看成是Sn。解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,那么只需證an>bn即可,根據(jù)定積分知識畫出y=1/x的圖。an=1×1/n=矩形面積>曲線下面積=bn。當然前面要證明1>ln2。注:僅供有能力的童鞋參考!!另外對于這種方法可以推廣,就是把左邊、右邊看成是數(shù)列求和,證面積大小即可。說明:前提是含ln。
26,爆強簡潔公式:向量a在向量b上的射影是:〔向量a×向量b的數(shù)量積〕/[向量b的模]。記憶方法:在哪投影除以哪個的模
27,說明一個易錯點:若f(x+a)[a任意]為奇函數(shù),那么得到的結(jié)論是f(x+a)=-f(-x+a)〔等式右邊不是-f(-x-a)〕,同理如果f(x+a)為偶函數(shù),可得f(x+a)=f(-x+a)牢記!
28,離心率爆強公式:e=sinA/(sinM+sinN)注:P為橢圓上一點,其中A為角F1PF2,兩腰角為M,N
29,橢圓的參數(shù)方程也是一個很好的東西,它可以解決一些最值問題。比如x/4+y=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!
30,[僅供有能力的童鞋參考]]爆強公式:和差化積sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]積化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2
31,爆強定理:直觀圖的面積是原圖的√2/4倍。
32,三角形垂心爆強定理:1,向量OH=向量OA+向量OB+向量OC(O為三角形外心,H為垂心)2,若三角形的三個頂點都在函數(shù)y=1/x的圖象上,則它的垂心也在這個函數(shù)圖象上。
積分公式有哪些呢,高數(shù)常用的積分公式有什么呢,下面小編為大家提供常用的積分公式大全,僅供大家參考。
很多孩子都抱怨:數(shù)學難學!學數(shù)學真苦真累,成天泡在題海中,成績還是不理想。高考就讓這數(shù)學拖后腿了。下面有途高考網(wǎng)小編整理了《高中數(shù)學沒學好最...
數(shù)學對于不少學生來說是一件頭疼的事,上課聽不明白,做題又不會,那怎么辦才好呢?下面有途高考網(wǎng)小編整理了《如何學好高中數(shù)學 數(shù)學學習方法》,希...
1/sinx不定積分是ln|cscx - cotx| + C。微積分中,一個函數(shù)f的不定積分,或原函數(shù),或反導數(shù),是一個導數(shù)等于f的函數(shù)F,...
線性代數(shù)tr(trace)是矩陣對角線上各元素的和。線性代數(shù)是數(shù)學的一個分支,它的研究對象是向量、向量空間(或稱線性空間)、線性變換和有限維...
只有一個。同濟《線性代數(shù)》(第五版)第61頁明確說明:一個矩陣的行最簡形矩陣是“唯一確定”的!行最簡形矩陣,是指線性代數(shù)中的某一類特定形式的...
高等數(shù)學a類是理工科本科各專業(yè)學生的一門公共必修的重要基礎理論課,主要偏向于理工科的知識結(jié)構(gòu)范圍;高等數(shù)學b類是生物、化學相關本科專業(yè)學生的...
數(shù)學主觀題的題型有簡答題、應用題等。主觀題也稱自由應答型試題。此類試題對于考查考生的語言表達能力、思維創(chuàng)新能力等方面有獨到的功能,但評分容易...
cscx不定積分是ln|tan(x/2)|+C。在直角三角形中,斜邊與某個銳角的對邊的比值叫做該銳角的余割,也就是cscx。余割與正弦的比值...
很多小伙伴們在上學的時候數(shù)學都不怎么好,那么高三數(shù)學不好要怎么補救呢?下面是小編整理的相關信息,感興趣的小伙伴們快來查閱吧。
等差數(shù)列是常見的一種數(shù)列。那等差數(shù)列公式通項公式?下面,就跟小編一起來了解一下吧。
等比數(shù)列前n項和公式是怎么推導的?想必許多同學對這個問題存有疑惑。下面,就跟小編一起來看看吧。
很多小伙伴都會學到等比數(shù)列前n項和,那么它的公式是什么,如何運用呢?下面是小編整理的相關信息,感興趣的小伙伴們快來查閱吧。
泰勒公式展開式都有哪些?下面,小編整理了一些常見的泰勒公式展開式,希望對你們有幫助。
等比數(shù)列的前n項和公式是什么?相信有些同學對這個問題還存有疑惑。下面,就跟小編一起來了解一下吧。